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16,
has also been utilized.

It is hypothesized that a plane wave propagating through the tropo-
sphere is perturbed by the two coupled statistical processes mentioned
above. This perturbed plane wave is then received by a finite aperture
antenna having a Gaussian power pattern. The average realized gain is
then calculated accounting for the angle of arrival fluctuations. The
resulting average gain degradation, when combined with the usual
atmospheric gas absorption, adequately predicts the reduced Tong term
signal levels observed at Tow elevation angles on earth-space paths at
2, 7.3 and 30 GHz. The expected value of the variance of the received
signal amplitude fluctuations is calculated by combining the amplitude
and angle of arrival statistics of the incident wave with the receiver
characteristics. This model predicts the average variance of signals
observed under clear air conditions at low elevation angles on earth-
space paths at 2, 7.3, 20 and 30 GHz.

Design curves based on this model for gain degradation, realizable
gain, and amplitude fluctuation as a function of antenna aperture size,
frequency, and either terrestrial path length or earth-space path
elevation angle are presented.

17.
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FOREWORD

The propagation of electromagnetic and acoustic waves in media
whose constitutive parameters are random functions of time and space
has become a topic of increasing interest. Terrestrial line of sight
and earth-space microwave propagation paths traverse the troposphere,
where fluctuations in temperature, pressure, and water content produce
random variations in the electromagnetic properties. The resulting
effects are generally more pronounced with increasing frequency and
larger path lengths. Communications technology continually progresses
higher in frequency and bandwidth in search of greater information rates,
long atmospheric path lengths are necessarily employed as satellites
come into common usage for communications relays, and remote sensing
of meteorological, terrestrial, or airborne phenomena requires electro-
magnetic propagation through long distances in the atmosphere. The
design of each of these potential or current technologies requires
knowledge of the interaction between the turbulent atmosphere and wave
propagation based upon a realistic model of the turbulence and its
consequences,

The work of V. I. Tatarski [1] in 1961 appears to be the first to
form a broad theoretical basis for plane wave propagation through a
turbulent atmosphere. His amplitude fluctuation and power spectrum
results were extended in 1971 to include phase and differential phase
variation [2]. The work of Schmeltzer [3] extended this work to form
a basis for spherical-wave, finite-aperture cases. Both sets of work
employed the Rytov method and its inherent restrictions that the
magnitude of fluctuations on the wave be small and that all refractive
perturbations be large compared to wavelength. In 1969, Lee and Harp [4]
applied a phase screen technique to this problem which permitted
generalized amplitude and phase fluctuation expressions to include
finite antenna apertures, focused beam waves, medium losses, and
atmospheric anisotropy. This technique, which has a primarily physical
rather than mathematical basis, allows the Rytov restriction of large
perturbations relative to wavelength to be relaxed. Either or both
methods have been variously employed by Clifford [5], Ishimaru [6],
and Mandics, Lee, and Waterman [7] to obtain temporal frequency spectra.
The extension of turbulence theory to account for strong fluctuations
and explain the optical saturation phenomena was made by Gracheva and
Gurvich [8] in 1965,

Excellent summaries of the above work and reviews of current work
are available [1,2,9-13]. The recent summary by A. Ishimaru [13]
contains a particularly good bibliography of theoretical and experimental
papers.
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In principal, theoretical work in this field may be verified by
experiment, and a great deal of effort has been made to do so.
Experiments must be structured carefully such that all relative physical
parameters are measured and no false assumptions are made about the
measurement equipment or the medium. Because of the statistical nature
of the measurement problem, limited temporal measurements of quantities
such as amplitude, absolute, or differential phase do not adequately
characterize random media propagation effects from the systems appli-
cation viewpoint. Communications Tink design requires long term time
characterization in the form of amplitude, phase, spectral, and coherency
distributions. The work which follows presents a long term, time
average, statistical model with empirical constants for microwave
propagation through the turbulent troposphere. Amplitude and differential
phase statistics are specifically addressed, but the techniques may be
extended to spectral and coherency characterizations.

The material contained in this report is also used as a dissertation

submitted to the Department of Electrical Engineering, The Ohio State
University as partial fulfillment for the degree Doctor of Philosophy.
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INTRODUCTION

The propagation of electromagnetic and acoustic waves in media
whose constitutive parameters are random functions of time and space
has become a topic of increasing interest. Terrestrial line of sight
and earth-space microwave propagation paths traverse the troposphere,
where fluctuations in temperature, pressure, and water content produce
random variations in the electromagnetic properties. The resulting
effects are generally more pronounced with increasing frequency and
larger path lengths. Communications technology continually pro-
gresses higher in frequency and bandwidth in search of greater infor-
mation rates, long atmospheric path lengths are necessarily employed
as satellites came into common useage for communications relays, and
remote sensing of meteorological, terrestrial, or airborne phenomena
requires electromagnetic propagation through long distances in the
atmosphere. The design of each of these potential or current tech-
nologies requires knowledge of the interaction between the turbulent
atmosphere and wave propagation based upon a realistic model of the
turbulence and its consequences.

The work of V. I. Tatarski [1] in 1961 appears to be the first
to form a broad theoretical basis for plane wave propagation through a
turbulent atmosphere. His amplitude fluctuation and power Spectrum
results were extended in 1971 to include phase and differential phase
variation [2]. The work of Schmeltzer [3] extended this work to form
a basis for spherical-wave, finite-aperture cases. Both sets of work
employed the Rytov method and its inherent restrictions that the
magnitude of fluctuations on the wave be small and that all refrac-
tive perturbations be large compared to wavelength. In 1969, Lee
and Harp [4] applied a phase screen technique to this problem which
permitted generalized amplitude and phase fluctuation expressions to
include finite antenna apertures, focused beam waves, medium losses,
and atmospheric anisotropy. This technique, which has a primarily
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physical rather than mathematical basis, allows the Rytov restriction
of Targe perturbations relative to wavelength to be relaxed. Either
or both methods have been variously employed by Clifford [5],
Ishimaru [6], and Mandics, Lee, and Waterman [7] to obtain temporal
frequency spectra. The extension of turbulence theory to account for
strong fluctuations and explain the optical saturation phenomena was
made by Gracheva and Gurvich [8] in 1965,

Excellent summaries of the above work and reviews of current work
are available [1,2,9-13]. The recent summary by A. Ishimaru [13]
contains a particularly good bibliography of theoretical and experi-
mental papers.

In principal, theoretical work in this field may be verified by
experiment, and a great deal of effort has been made to do so.
Experiments must be structured carefully such that all relative physical
parameters are measured and no false assumptions are made about the
measurement equipment or the medium. Because of the statistical nature
of the measurement problem, limited temporal measurements of quantities
such as amplitude, absolute, or differential phase do not adequately
characterize random media propagation effects from the systems appli-
cation viewpoint. Communications Tink design requires long term time
characterization in the form of amplitude, phase, spectral, and co-
herency distributions. The paper which follows presents a long term,
time average, statistical model with empirical constants for micro-
wave propagation through the turbulent troposphere. Amplitude and
differential phase statistics are specifically addressed, but the
techniques may be extended to spectral and coherency characterizations.



CHAPTER 1T
METHOD
As millimeter wave systems are applied to earth-space and
terrestrial communications links, the designer must be aware that
certain propagation phenomena which were negligible at lower
frequencies will have pronounced effects on link characteristics.
For example, a larger aperture which adds gain to the link equation
at high elevation angle on an earth-space path may provide Tess gain
than expected if employed at Tow angles. Similarly, clear air
amplitude scintillations which may be neglected at decimeter wave-
lengths on a long unobstructed terrestrial path may be quite sig-
nificant at millimeter wavelengths.

The temporal behavior of the signal is less important than its
statistical properties when one is interested in link reliability.
The long term time average behavior of signal level and variance are
the most useful design criteria for a communication link which must
be continuously operational over a period of years. A propagation
model must predict this long term average behavior and provide a
statistical measure of expected deviation from that mean in terms of
long term probability distribution functions.

Refractive irregularities in the troposphere due to turbulence,
humidity, and temperature gradients affect the propagation of electro-
magnetic waves of centimeter and shorter wavelengths quite markedly on
long terrestrial propagation paths or on earth-space paths with small
elevation angles. As a plane wave traverses the atmosphere, changes
in refractive index due to turbulence, i.e., ripple or tilt, will
perturb the phase front, induce amplitude changes by focusing effects,
and scatter energy away from the propagation path. The following
discussion will deal only with clear air effects and thus energy
scattered out of the beamwidth of an antenna will be considered

negligible compared to the energy received. Frequencies of interest




will range from roughly 1 to 100 GHz, which are sufficiently high that
ionospheric effects may be neglected except in rare instances.

The statistics of the perturbed wave are modelled by theoretical
expressions matched to experimental observations. The perturbed wave
impinges on a finite aperture antenna, whose response is a receijved
signal with amplitude diminished from that expected for a free-space
path and fluctuating in amplitude.

An expression for the incident wave, the manner in which it
attenuates and decomposes into amplitude and angle varying components
and the transfer function of the receiving antenna will now be
presented.



CHAPTER II
STATISTICAL MODEL

An unperturbed plane wave will be considered incident on a
turbulent medium at position z=0 (Figure 1). Propagation within
the turbulence and the resulting perturbations of the signal
continue until the wave impinges on a receiving aperture at Z=L,
The incident plane wave decomposes into two uncoupled components
as it traverses the region of turbulence,

The first component, with magnitude f], varies in amplitude
and is constant in angle. All of the plane wave energy is contained
in f] at z=0, and its amplitude fluctuation is very small at the
beginning of the turbulent region. As this component penetrates
deeper into the turbulence, it loses energy to the second com-
ponent and its peak-to-peak amplitude fluctuations become a larger
percentage of its own remaining energy.

The second component, having magnitude fz, is constant in
amplitude at any given position z and it varies in angle or direction
of propagation. f2 contains no energy at z=0 and at the beginning
of the region of turbulence it is small in amplitude and has small
fluctuations in angle. As this component penetrates into the
turbulence it acquires energy at the expense of the amplitude
varying component, f], and its peak-to-peak angle fluctuations

increase,

This concept of constant angle and constant amplitude com-
ponents which are uncoupled corresponds to Ishimaru's discussion of
coherent and incoherent waves (Reference [13], pp. 1046-1047) for
T1ine of sight propagation through randomly distributed particles.
The constant angle, varying amplitude intensity <f$> corresponds to
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Figure 1. Plane wave decomposition.
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Ishimaru's coherent intensity, I . Also, the constant amplitude,
varying angle intensity <f§> cor;esponds to his incoherent intensity,
Iie

The magnitude of the electric field component, Ei’ of a per-
turbed plane wave incident on a receiving aperture is a random function
of time, varying in amplitude and phase

Ei = C[¥]cos(w0t+€0+E]-§B°?)+f2cos(wot+€0+E2-§Q-F)] . (1)
Random variables are denoted by tilde, and C represents the average
magnitude of an incident plane wave, including free space path loss
and gas absorption, after propagating through some length, L, of
turbulent medium. f] and f2 are magnitude components repre-
senting the decomposition, as a function of distance, of the original
wave into amplitude and angle of arrival varying parts, respectively.
The frequency of the wave is Wy € is the mean absolute phase
between the transmitter and rece1ver, and 51 and €2 are random
variables representing fluctuations in apparent path length. It is
assumed that scattering out of the path does not occur and that the
random amplitude and angle of arrival processes are conservative in
intensity, i.e.,

<>+ fs = 1 (2)
where < > denotes the ensemble average over amplitude and angle.

Note that total intensity is one, that is, it is normalized to

power density at any position along the path. This normalization

is justified because the factor C in Equation (1) contains free

space and gas absorption terms which equally affect f1 and f2 In
addition, it will later be shown that the amplitude process <? >
further splits into an average and fluctuating part for the case of
strong turbulence. The mean power in the amplitude component
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) 2 72 . - .
f7(1+01}9 where oy is ampiitude variance

will take on the form <?%> =
and ?} is the statistical mean of ?1“ This is simply a statement that,
for ?]3 the peak to peak fluctuation increases at the expense of

power in the mean, as we saw in the sketch of f](Z=L) in Figure 1.

8 is the vector propagation constant, where the subscripts 0 and o

denote the direction of propagation relative to the beam axis. r is
the position vector.

The receiver will be assumed linear, with ideal bandpass
characteristics, and does not maintain absolute phase coherence. If a
square-law device is employed as the first mixer, the receiver output
voltage will be (see Appendix I)

N A Y n N

v = yif CI?]G(O)exp(—1g])+sz(a)exp(—1£2)l . (3)
Note that absolute phase is lost and the w,t time dependence is
effectively integrated by the bandwidth of the receiver. G(o) is the
directive gain of the antenna as a function of the angle of arrival, o,
measured with respect to the beam axis.

The first and second moments of V, namely mean <v> and second
moment <Vz>, must be obtained in order to characterize received
signal variance and gain degradation. Hence, the statistical properties
of ?1, g, E], and 22 must be used since they comprise the expression
for V. %1 and f, are amplitudes of the two components and 21 and 22
are their respective relative phases. In the following, n and o will
denote the random variable spaces in amplitude and angle of arrival,
respectively.

Define & as an angle of arrival random variable, referenced to
the axis of the receiving antenna_beam. 1Its distribution in angle

equals the mass in the circle ajJ62+¢2 of radius o, where 0 and ¢ form

an orthogonal coordinate system with the axis (see Figure 2). The
beam axis s pointed in the mean direction of arrival of the incident
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22

ANTENNA AXIS
6
Figure 2. Geometric definitions,
wavefront. Hence 6 and $ have zero mean angle of arrival. If they

are also normal, independent random variables with equal variances

)
shown [16] that the probability density function, pdf, of the angle

. N
varying component of v is then

(02=0§=0§), and constant in amplitude dummy variable n, it may be

hy(en) = h (2)8(n) = % expl-a®/20516(n); «> 0. (4)

The angle varying component f2 is constant in amplitude, namely ?é in
amplitude, and hence has zero amplitude variance. The definition of
its pdf on the amplitude random variable space with the Dirac delta
function 6(n) denotes this fact. The angular fluctuation in a is
completely specified by the Rayleigh density function ha(a), with
angular variance parameter Go. Independence between the o and n
random variable spaces is observed, since hz(a,n) is expressed as a
simple product of pdf's, one a function of only o and the other a
function of only n.

The random amplitude component ?] has been found to be normally
distributed [14]; Tet its mean be ?}, its variance o%, and express its
randomness in terms of the amplitude dummy variable, n and the angle
of arrival variable, o. The pdf, h1(a,n), of the amplitude varying
component, %T’ is then assumed to be

ny(esn) = b (1)8(a) = - expl-(0-F;) /20716 (a), (
‘2w01

[Sn]
p—
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where (o) denotes that amplitude varying component %} is constant
in angle of arrival and hence independent of the angle varying com-
ponent of v [15]. The amplitude fluctuation is expressed by the
Gaussian density function hn(n) with amplitude mean ?i and variance
o%. The assumption of a normal distribution function for ?] is based
upon the weak scattering assumption used by Tatarskii and the fact
that the statistical behavior of log normal and normal variables is
identical for small fluctuations.

Henceforth, the subscript 1 will denote statistical quantities
in the amplitude domain n. Likewise, subscript 2 will be used to
specify statistical parameters referred to the angle of arrival domain,
o. This use of subscripts does not imply, however, that ?] is only
defined on amplitude space n, i.e., it carries constant o dependence.

The phase variables E] and 22 represent random delay variables
caused by apparent fluctuations in path length. For reasonably long
path Tengths and assuming that all scattering mechanisms are inco-
herent, the E] and 22 random delay variables will fluctuate over
many radians and may be considered to be uniformly distributed over
-m/2 to n/2.

The path length dependence of f] and f2 will now be examined.
It has been shown [17] that the variance of the normal direction
vector of a plane wave increases Tinearly with path length when
the path length is greater than the correlation radius of the
refractivity fluctuations. This condition is certainly met for
paths several kilometers long. Additionally, since the axis of the
antenna is aligned with the mean angle of arrival, the second moment
of the zero-mean angle of arrival component follows the variance

2=<52>. A suitable

behavior of the wavefront direction vector, i.e., o
model for the decomposition of an unperturbed wave into incoherent angle
of arrival fluctuating components has been suggested in Reference 13,

Fquation (2-126), to be exponential, with some characteristic decay rate,
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say Lo§ which is dependent upon the scattering cross section of the

turbuience. The expression
2 : )
¥o= 1 expltit,] (6)
[N

combined with (2) will be used as a suitable model for this desired
behavior. Also, recall that f2 varies in angle and is constant in
amplitude. Hence, (6) may be rewritten

Bo=1-ep [-L/L]= f (7

2%}
A1l statistical quantities in the expression for v have now
been defined and these definitions will be used to determine the
first and second moments of the receiver output voltage,

V= /3= C|YETOTH exp(-1E)+/B(E) £, exp(-iE,) ], (8)

4

If B is the beamwidth of the antenna in degrees and g(o) is the pattern
factor, then

6(a) = g(a) (180)%/B%  and (9)
N 180A 2 ve2
Ch C| (Oifl + g(a)f; - (10)
+ g(O)g(a)f]fz eXP(-1€1+1€2)

RN VY n n
+ /g(O)g(u)f]f2 exp(+1£]—1€2)l]/2 .

Assume a representative pattern factor for a narrow beam, cir-
cularly symmetric beam with 3 dB beamwidth, B, to be

2
gla) = exp{g%—ﬂéglLng . (1)

The first moment of V is found by integrating (10) and the
pdf hl(a’n) and pdf hz(u,n) times variables containing ¥T and fz,
respectively. Integration on amplitude variable n is taken over
-« to = and on angle variable o from 0 to =. The phase variables

£, and ¢

| 5 are uniformly distributed over -n/2 to n/2 and hence

2
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the integration of the last terms in (10) is nearlyv zero (see

Appendix B). This integration reduces the first moment to the form

[T \2
v 180) —_
<y e C (J;-& Vg(0) n hn(n)é(a)dadn
o o 211/2
S-J.VE_EWf h (a)8(n)dadn : (12)
SN0

Substituting (4), (5), and (11) into (12) and using the properties
of a Rayleigh distribution function (see Appendix B), one readily
obtains

) 2)1/2
SRS L R e : (13)
BYA 49020548

2

Note that the mean of % approaches 180 C for wide beamwidth, i.e.,

5 5 B/4ﬂp
B >>4Rn262. That is, the mean received signal is not degraded since its

beamwidth is wide compared to the turbulence effects on angle of arrival.

. g
The expression for v~ is

2.2

v - é§§;3~ ¢l 9(0)¥+a(a) orale) ¥, fpexpl-1 (2,-2,)]
o) f )T expl-i( 2 E])i. (14)

The second moment of V is found by integrating Equation (14) and the
pdf h}(a,n) and pdf hz(a,n) times variables containing %1 and fo,
respectively. Integration on amplitude variable n is taken over

-2 to = and on angle variable o from 0 to ». Again, the phase integration
on uniformly distributed random phase variables E1 and EZ over -n/2 to

/2 veduces the second moment to
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2> - 18 ¢ 2

o
8 v 8

J[g Féh (n)8(a)+g(o )f h, (a)8(n)]dodn .
0

It may then be shown that (Appendix C)

2.2 2
e 180 A 212, = =2 B
<y > o= C™ los+f5+f . (16)
824 1172 82n20§+82
A gain reduction factor R may be defined in terms of <§>2 and
<V>2 evaluated for o§=0 as
<2
R =10 1o (17a)
Yo 32 )
02=O
’ 2
2 D
ﬂdﬁ? "_g 7
42n202+B
R =10 10910 " . (17b)
f]+f2

This gain reduction represents available received mean signal power

relative to the signal power available if angle of arrival effects

were absent. A similar measure of received signal variance expressed

in dB is
2 <V2> <V>2

<v>

w
I

?2 B

+82

> v . (19)
Al
42n?o +B

2

82n2024+0%  2\4an2o
2 2
5% = 10 Togy

NPl N
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This signal variance is a measure of fluctuating power in the received

signal compared to the available received DC signal power.

The two statistical quantities which have now been defined, namely
~ gain reduction, R, and signal variance, 82, may be incorporated into
distribution functions which are of the form used in link design. The
long term time behavior of the received signal on a microwave link may

be characterized by a fade distribution function. The turbulence

induced effects with which we are dealing are long term average

phenomena and hence are present at all times. A hypothetical low
elevation angle fade distribution is presented in Figure 3. The abscissa
is referenced to the signal Tevel received in the absence of turbulence,
i.e., including free space loss and gaseous absorption. The point at
which the signal level is R dB is also the mean of the received signal;
thus, one point on the fade distribution is established. The fade
distribution for turbulence induced fluctuation is assumed to be Tog-
normal, with mean and median being equal. The fade distributions
resulting from the Ohio State University ATS-6 30 GHz beacon measure-
ments (Ref. (30}, pp. 72-75) indicate that this log-normal assumption is
valid for elevation angles above approximately 2°. A similar observation
was made concerning the 7.3 GHz fade distributions above 4° elevation
angle observed by McCormick and Maynard (Ref, 35).

A fade distribution may now be produced using this assumption of
linearity. Referring to Figure 3, it was noted that the point at which
the received signal level is R dB represents the mean signal level. For
a normal distribution, the mean is plotted at the 50% time abscissa
exceeded point, indicated by (:) in Figure 3. One standard deviation
to the right of the mean on a normal distribution occurs at the 15.9%
time abscissa exceeded level. It may be shown (Appendix E) that one
standard deviation of received signal level, expressed in dB and
denoted Svyp> may be written in terms of the signal variance 52@ This

point, to the right of R is denoted by (:) in Figure 3. A

“vdp
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straight line drawn between points (D and (@ now approximately

represents the fade distribution, referenced to the mean signal Tevel
in the absence of turbulence induced fluctuation. This distribution
was based on small fluctuation arguments and should be employed as a
lower bound when estimating a particular fade distribution.

Deviation of this fade distribution from the expected linear
form will occur at small time percentages. Additional fading due to
precipitation, abnormal refraction, or inversions in the atmosphere
will cause greater fade depths for the small time percentages. However,
the turbulence effects, which are always present, are still dominant
for larger time percentages. For high elevation angles, i.e., short
path lengths, 82 will be very small and the Tine drawn through points
@ and @ will be virtually vertical. However, the precipitation
effects at the lower time percentages will still be present for short
path Tength cases and will become the dominant feature of the fade
distribution.

The expressions for R and 52

will eventually be compared with
measured data as a function of path length. But first, it is necessary

to obtain expressions for o? and cg.



CHAPTER 111
EMPIRICAL CONSTANTS

Several measurements of angle of arrival variability of electro-
magnetic waves as they propagate through a turbulent atmosphere have
been made. Ten experimental papers dealing with these measurements
were examined and compared [18-27]. All results are for terrestrial
microwave Tinks operating at frequencies from 1 to 35 GHz over paths
ranging in length from 5.5 to 80 km and located in various climatic
regimes. In addition, angle of arrival statistics for an earth-space
path from the Ohio State University CTS (Communications Technology
Satellite) 11.7 GHz Beacon Experiment [28,29] are included.

Comparison between terrestrial and earth-space path propagation
data may be made only if one assumes an equivalent atmospheric path
length for the earth-space Tink. Although vertical gradients of
temperature, pressure, water vapor density, and hence, refractivity
exist in the atmosphere, one may replace this real atmosphere with a
homogeneous atmosphere of some given height under standard temperature
and pressure conditions for long term statistical purposes. It has
been found, using amplitude scintillation measurements of the ATS-6
(Applications Technology Satellite - 6) 30 GHz beacon, than an equiva-
lent atmospheric height of 6 km is sufficient for the prediction of Tong
term time average scintillation behavior. Under this assumption, the
CTS data taken at a 32° elevation angle traverses an atmospheric slant
path over a curved earth equivalent to a 11.3 km terrestrial path.

The statistic to be compared from the several sources of data is
the variance of the angle of arrival with respect to the mean direction
of arrival, cg expressed in dB below square degrees as

2 2
o, =10 Togyy o5 . (20)

dB
The normalization with respect to one square degree is arbitrary but is

necessitated by the fact that normalization to the mean angle of arrival
has no physical significance. The papers in which these data appear

17
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are not consistent in their definitions of variability. Hence, the
following three conventions were assumed in an effort to make a meaning-

ful comparison of the results

1) if variability was expressed as standard deviation oo in
parts per million (ppm) of wavelength (1),

2 ( 0'2X>\ '2
UZdB = 10 logyq | Arctangent \ peemiyar Separation)J > (21)

2) if variability was expressed as a cumulative distribution

function of relative angle of arrival, o, and plotted on

Gaussian probability paper,
2

[u at 2.5 percentile - o at 97.5 percenti]e] )
4

s

2
GZdB = 10 10910
(22)

3) if variability was expressed as the observed maximum peak-to-
peak excursion in o,

O2 = 10 log 0.95 x max. peak-to-peak excursion of a |
2 10 4
dB
(23)
Table I summarizes the data and the method used to arrive at cg. The
resulting angle of arrival variances are also shown in Figure 4. Ob-
taining cg is quite subjective for many of the data sources, especially
where limited measurements were presented. When a range of variances or
probability density standard deviation limits were available, those limits

were plotted as vertical lines through the data points in Figure 4.

The data of Table I suggest that variability increases proportion-
ately with path Jength. Hence, the angle of arrival variance in dB
og was plotted versus path length L in Figure 4 on a logarithmic scale.
A first order regressive fit was then performed, resulting in:

o5 = 7.07 x 107° x L1+°° (deg?)

(24)

with L expressed in kilometers. This relationship is shown as a

solid Tine in Figure 3.
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TABLE 1
Fig. 4 Data Freq. Path Length Average Method
Symbo Source (GHz) (km) éB below deg?)  (1,2,3)
@ Deam & Fannin 9.35 5.5 ~-38.2
o) Herbstreit & Thompson 1.05 6.5 -37.0
o Lees 35 10.5 ~36,5
s 0.S.U. 1.7 11.3 -32.8
(equivalent
Earth-Space path)
¥ Lai-iun Lo 15.3 15.2 -40.75
& Etcheverry et.al. 93 18.95 -31.4
% Lee & Waterman 35 28 -25.2
+ Akiyama et.al. 11,24 29 -27.7
+ Akiyama et.al. 11,24 33 -27.4
¢ Bell 11.0 55,4 -32
X Janes et.al. 9.6 64.25 -20.4
X Janes et.al. 34.5 64.25 -22.9
+ Akiyama et.al. 24 78.7 -21.62
* Funakawa et.al. 12.6 80 -21.6
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Theoretically, it can be easily shown [17] that angle of arrival
variance should increase linearly with increasing path Tength in a
turbulent atmosphere under the assumption that L>>L05 i.e., the path
length is much greater than the scale size of the largest turbulence-
induced inhomogeneities present on the path. Also, angle of arrival
variance og is mainly due to the large-scale components of the
turbulence spectrum. Under these assumptions the turbulence theory
of Tatarski leads to the following expression for cg

2

-1/3
92

= 0885 C5 a7/ L (deg®) (25)
where Cn is the refractive index structure constant. This theoretical
expression is also plotted on Figure 4 for representative values of

Cﬁ, where d is aperture diameter and was taken as 1 m for the theoretical
curve. The form of Equation (25) assumes that d<<v¥2L, a valid assumption
for millimeter and longer wavelengths at path lengths of several
kilometers. Several uncertainties in the parameters of og may account
for differences between the theoretical and the empirical regression
curves. The angle of arrival variance og may vary ¥1.3 dB due to
differences in aperture diameter d, *18.2 dB due to typical variations

in the atmospheric structure constant Cg, or 4,6 dB due to the range

of path elevations encountered in the experiments [31]. Additional
differences may be due to inappropriateness of the plane wave assumption,
especially for short path lengthsor the requirement that L>>LO, again,
questionable for short path lengths.

The earth-space slant path data of Ohio State University falls
within 2 dB of the regression line and, within the same limitations as
the terrestrial data, agrees well with both the theoretical result as

well as the other terrestrial measurements.

The empirical relationship (Equation (24)) which has just been

presented obviates the problem of calculating og for our model in terms

~

. 2 .
of a "representative" value for Ln’ which may range over twoc orders of
magnitude from time to time.
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The last parameter to be determined is g?i the variance of the
amplitude fluctuations. From Tatarskii [32], one finds that for weak
fluctuations

of n 2 /12 11/ (26)

where K is the propagation constant.

We now have expressions for c% and og, both having unknown con-
stant multipliers, and an unknown length, LO, each of which must be
empirically determined in order to predict long term average behavior
of variance 82 and gain reduction R. In the next section measured
variance data were used to determine these constants.

Variance S2 was measured as a function of elevation angle at
2 GHz with a 10 meter diameter antenna and at 30 GHz with a 5 meter
diameter antenna [30]. A regressive power law fit was available for
the data from elevation angles of 2° to 40° for the 2 GHz data and
.5° to 40° for the 30 GHz data. These limits are such that the horizon
did not lie within the 3 dB beamwidths of the antennas. Expressions
for o% and og in terms of the three unknown constants were used in the
model of 82
regression line from measured data at 2 and 30 GHz and the three con-

(Equation (19)). This expression was compared to the

stants were varied to obtain a regressive fit minimizing the following
mean-square-error:
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Expressions (24) and (25) with both L and L dependence for GS

were employed in the regression defined above. The minimum error

L]'56 dependence was approximately 40% less than that

obtained for the
for the L]‘[J dependence case. Hence, although theory predicts Tinear
behavior of angle of arrival variance as a function of path length, the
L]'56 form was used to compare the model to measured data and to obtain
design curves, The final constants derived by the procedure outlined

above which are used in the remainder of this work are:

L, = 180 (kn) (28a)
o$ - 2.6 x 1077 /12 | 11/6 (28b)
o5 = 5.67 x 1070 L1-90 ¢71/3 (deg?) . (28¢)

Now that the model is complete, results from it will be compared with
measured gain degradation and amplitude scintillation results in the
next two sections.




CHAPTER 1V
AMPLITUDE VARIANCE

The expression for received signal variance (Equation (19)) was
compared as a function of elevation angle with data acquired from the
20 and 30 GHz ATS-6 satellite experiment as the satellite was moved
from equatorial orbit at 94°W longitude toward 35°E longitude in 1975,
The ground terminal at The Ohio State University, Columbus, Ohio
employed a 4.5 m diameter parabolic, shared aperture antenna for both
20 and 30 GHz. The linear receiver output voltage was sampled at a
data rate of 10 samples/sec and the variance, expressed in dB with
respect to the DC power level for N samples, was calculated from

2 _ . =
ST =10 10g1O 5 ; n = 1024 (29)

where

.i
v = 1= . (30)

The apparent elevation angle of the satellite varied from 42° to
almost 0° as it drifted eastward, and there were no optical obstructions
along the propagation path. Time average variances, calculated according
to Equation (29), were recorded for each elevation angle, consisting of
clear air data periods of one to several hours in duration. Atmospheric
path lengths were calculated assuming a spherical earth with a homo-
geneous atmosphere of height, h, and effective radius, R, taken as
4/3 the actual radius, or 8479 km, to account for standard refraction.
The path length is then

L= [h% + 20k + R% sin 017 - R sin o (31)

where 0 is the elevation angle.
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The data were fit in a minimum mean-square error sense to the form

2 B

ST = AL (32)
using expression (31) for L and also regressively fit to determine
the effective height, h. The results were
- +
S2 - 10 6.39 L2.29 1 (33)
20
-6.2 ,2.35%.1
s5y = 1070+ 2.3 (34)
and h =59t km . (35)

The model for received signal variance (Equation (19)) was then compared
to these results using path lengths also calculated from Equation (31).
This comparison of the calculated results and the regression fit to the
experimental data is shown in Figure 5. Notice that the agreement is
within a decibel or two over most of the range shown and for very low
elevations the magnitude of the 30 GHz fluctuations is approaching the
level of the DC component of the received power.

A second set of data was acquired in 1976 as the ATS-6 satellite
was returned to 94°W. A 2 GHz Tinear receiver utilizing a 9.1 m
diameter parabolic antenna was implemented and variance data were
obtained according to Equations (29) and (30). The 20 GHz transmitter
was not functioning during the 1976 transition, but the 30 GHz beacon
was available. The comparison between the amplitude variance
theoretical model and the 2 and 30 GHz experimental data is shown in
Figure 6. The agreement between the theoretical model and the experi-
mental results is better than that shown for the 1975 data.
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A final example compares the theoretical variance model with
measurements of the IDCSP x-band beacon reported by R. K. Crane [33].
This experiment employed the 60 foot parabolic antenna at Westford,
Massachusetts operating at a frequency of 7.3 GHz. Received power
fluctuations were observed on angles from 0.5 to 10.0 degrees. Maximum
and minimum 1imits were estimated from the data points presented in
Reference [33], Figures 19 and 20, and plotted consistent with the
definition of 52. The mean of the limits, in dB, was also calculated.
Figure 7 presents the means and Timits of the measured data along with
the variance predicted by the theoretical model. Again, the agreement
is quite good.

The model (Equation (19)) for variance consists of amplitude and
angle of arrival induced components, with each mechanism having greater
or lesser importance depending on the path length, frequency, and
beamwidth. To illustrate, consider Figure 8. The model for a 30 GHz
signal and 4.6 in parabolic antenna is presented along with the constituent
variance components due to amplitude only (i.e., cg = 0 in Equation (19))
and angle of arrival only (i.e., o% = 0 in Equation (19)). MNote that
the amplitude mechanism is most important at higher elevation angles and
increases as elevation approaches zero. However, at about 11° the
angle of arrival mechanism equals that of amplitude and then becomes
dominant as the elevation angle decreases toward zero. Hence, amplitude
scintillation resulting from angle of arrival effects for this case are

relatively insignificant above 11°.

The manner in which the incident wave splits into angle and amplitude
components is illustrated in Figure 9. The case plotted is for a

4.6 m diameter antenna at 30 GHz. The intensity has been normalized

to the total power received at any position along the propagation path,
i.e., atmospheric gas loss and free space path loss are not included.
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Figure 9. Amplitude and angle of arrival constituents
of incident intensity.

The amplitude intensity, <f%>, dominates for path lengths less
than about 120 km in this case. For very long paths, <f%> becomes rather
small and, in addition, power begins to transfer into the variance
component c$<f$>. The angle component <f§> dominates for path lengths
Tonger than 120 km thus implying the dominance of angle of arrival

effects on received signal variance at low elevation angles.

The comparisons between the ATS-6 and IDCSP measurements and
the theoretically predicted amplitude variances tend to justify the
empirical results used to model amplitude variance 0% and angle of
arrival variance og. Although the method used to obtain average angle
of arrival statistics as a function of path length involved subjectively
reducing numerous reported forms of data to a single definition of
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6%, the resulting theovretical model seems to predict lona term time
a;erage amplitude fluctuation quite well. Daily variations of the
atmospheric structure constant Ci are averaged out in this type of
modeling. However, the system designer may wish to account for the
response of his communication Tink to the full range of expected Cg
variation which has been observed to be nominally ¥ 10 dB about the

long term mean [34]. An example of such a maximum, minimum, and average
received signal variance is presented in Figure 10, again, for a 4.6 m
diameter antenna operating at 30 GHz. The maximum * 10 dB range is
present at higher elevation angles but shifts somewhat Tower with respect
to the average as the elevation angle decreases to zero. Similar behavior

is expected for other combinations of frequency and aperture size.

The frequency dependence of the amplitude variance for a fixed
aperture size is shown in Figure 11, This family of design curves
presents long term time average received signal variances for a 4.6 m
diameter parabola with frequency ranging from 1 to 100 GHz. The com-
parisons between theoretical and experimental results presented above
indicate that the model is acceptable for frequencies between 2 and 30
GHz. The curve for 100 GHz 1is included only as an indication of the
degree of amplitude scintillation to be expected if extrapolation
using this model is warranted. This model establishes a Tower bound
on the expected amplitude scintillation at 100 GHz because refractive
layers, abnormal focusing, or non-negligible scattering at this fre-
quency, and consequently very narrow beamwidth (.04°) for a 4.6 m
aperture, will enhance the scintillation.

Comparison of measured and calculated variance lends a measure of
credibility to the model, at least from 2 to 30 GHz. The second quantity
which the theoretical model predicts, namely gain degradation, will now
be compared with experimental data as a function of elevation angle.
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CHAPTER V
GAIN DEGRADATION

The expression for long term time average received signal level
(Equation (17)) as a function of elevation angle was also compared with
measured satellite data. As the ATS-6 satellite (2 and 30 GHz beacons)
was moved from equatorial orbit at 35°E longitude toward 94°W longitude,
average received signal level was recorded and plotted as a function
of elevation angle from 0° to 40° [30]. A 4.6 m diameter Cassegrainian
antenna was employed at 30 GHz and a 9.1 m diameter focal point feed
antenna was utilized at 2 GHz., In addition, median signal level as a
function of elevation angle is available from measurements made by
McCormick and Maynard at the Communications Research Center in Ottawa,
Canada using the US TACSATCOM-1 7.3 GHz beacon [35]. The median signal
level was received with a .3° beamwidth antenna as the satellite
drifted westward, with elevation angle decreasing from 6° to 0.5° over
a period of 23 days, The data from Reference [35], Figures 1 and 2,
were presented as a series of distributions of received signal level
as a function of one degree increments of elevation angle. The means
were assumed to be the signal Tevels at the 50% time ordinate and
these means were associated with the elevation angles at the center
of the one degree increments.

The theoretical model was used to predict mean signal level
degradation due to atmospheric fluctuation as a function of elevation.
This gain degradation was combined with atmospheric gas Tloss calculated
for a 6 km equivalent height homogeneous atmosphere at standard
temperatuare and pressure and plotted in dB relative to the received
signal level at 90° elevation angle. Predicted curves are presented
in Figure 12 for 2, 7.3 and 30 GHz for antenna beamwidths of 1.8°, 0.3°
and 0.15°, respectively, along with measured mean signal levels from the
ATS-6 and TACSATCOM experiments. The agreement is quite good, verifying
that the theoretical model adequately predicts Tong term time average
gain degradation as well as amplitude variance.
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Figure 12. Measured received signal level compared
“to theoretical model.

An additional plot, Figure 13, presents only the gain degradation
component due to atmospheric turbulence, i.e., excluding atmospheric
gas loss. Compared to Figure 12, gas loss is certainly the major contri-
bution to signal loss at low elevation angles, but gain degradation
due to atmospheric turbulence is also significant, especially for the
narrow beamwidth, millimeter wave-length case. It may be shown that
the most significant parameter in the fluctuation degradation component
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is beamwidth. To illustrate, consider Figure 14. Gain degradation, due
to atmospheric fluctuation only, as a function of elevation angle is
presented for several beamwidths at a frequency of 30 GHz. Less than

1 dB of degradation occurs down to elevation angles of about 10°

(34.2 km equivalent path length) even for 0.05° beamwidth. Hence, the
long term time average gain degradation is relatively minor for path
lengths Tless than 34 km or elevation angles above 10°. To facilitate

an estimation of expected gain degradation in communication link

design, several design curves will now be presented.
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Realized gain as a function of antenna beamwidth or equivalent
aperture diameter at 30 GHz is plotted in Figure 15, A1l equivalent
aperture diameters, given a particu]arbbeamwidth and frequency, will
be.presented for an antenna efficiency of 0.6, The curve representing
zero path length L is simply the common gain approximation

6 =453 (36)

B
Realized gain curves for path lengths of 50 to 300 km are plotted
using the theoretical model. Equivalent earth-space path elevation
angles assuming a 6.0 km height homogeneous atmosphere are presented

in parenthesis.
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Notice that gain degradation due to turbulence induced fluctu-
ation is negligible for beamwidths wider than about 0.7° for all path
lengths. Degradation effects then gradually increase as beamwidth
narrows from 0.7° to 0.05° and at any particular beamwidth are
approximately directly proportional, in dB, to path length, As beam-
width narrows beyond 0.05°, a saturation effect occurs and the
degradation becomes constant for any one path length. An elementary
explanation is that for any path length, as beamwidth becomes extremely
small, the angle of arrival (incoherent) component of the incident
wavefront, <f§>, contributes little to the power received by the aperture
since this angle of arrival component has negligible probability of
being within the 3 dB beamwidth of the antenna. However, the amplitude
component (coherent and on-axis) remains constant and the power which
the aperture receives due to this component is only a function of path
length and not aperture size.

The frequency dependence of gain degradation is illustrated for
several beamwidths at 3 and 30 GHz in Figure 16. For the Tongest path
length, 300 km and for beamwidths wider than 0.2°, gain degradation is
virtually independent of frequency. At the narrowest beamwidth, .05°,
the degradation differs by approximately 1 dB. Hence, the turbulence
induced degradation effect is quite insensitive to frequency, as
opposed to the strong dependence it has on beamwidth.

The data of Figure 16 may be quite useful to the design engineer
employing large apertures at millimeter wavelengths. For example,
after considering atmospheric gas loss at a particular frequency on a
low elevation earth-space path for a 0.2° beamwidth antenna, the
engineer may decide that he must double the aperture diameter (halve
beamwidth) in order to attain a particular system margin. However,
looking at Figure 16, if the equivalent path length were 200 km the
link design should include a 4 dB average gain loss at .2° beamwidth
and still another 4 dB when going to .1°. In some cases, it might be
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Figure 16. Frequency dependence of gain degradation.

more economical to employ self-phased array antennas having elements of
relatively wide beamwidth (say .5°, referring to Figure 16) such that
adequate gain is achieved by adding elements whose individual power
patterns are wide enough so that average gain degradation and amplitude
variations due to turbulence are negligible.




CHAPTER VI
CONCLUSION
A model including the two coupled mechanisms of microwave angle

of arrival fluctuation and amplitude scintillation due to tropospheric
turbulence appears to be adequate for the prediction of long term time
average received signal levels and amplitude fluctuations on earth-
space and terrestrial propagation paths. The utility of an equivalent
6 km high homogeneous atmosphere and a long term expected value for
the atmospheric structure constant has been emphasized when deriving
the empirical constants necessary to produce design curves from the
model. The model does not address orographic or marine effects, but
its ability to predict observed data from Massachusetts, Ohio and Ontario
indicates that long term statistics of atmospheric turbulence may
not be strongly dependent upon the particular location or climatic
regime.

Design curves based on this model indicate that both received
signal. level reduction and amplitude scintillation due to tropospheric
turbulence are most apparent at narrow beamwidths. In the design of a
long path length terrestrial microwave link or a low elevation angle
earth-space link, the engineer must consider gain loss and amplitude
scintillation due to tropospheric turbulence if he wishes to use large
aperture, narrow beamwidth antennas. In cases where the angle of
arrival mechanism dominates, it may be advantageous to utilize self-
phased arrays to circumvent the gain degradation and scintillation
introduced by this mechanism. The theoretical model, when properly
applied, will indicate when such measures are hecessary.
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APPENDIX A
LINK PARAMETERS

The magnitude of the electric field component !E1| incident on an
antenna aperture is given in the text in Equation (1).

The power density at the receiver, Pr’ in terms of the medium
impedance, ZO, may be expressed as

where C is the magnitude of the incident electric field intensity.

The following parameters are required to characterize the com-

munications 1link:

1. P transmitted power in watts
2. G transmit antenna power gain

3. L free space loss = 16n2L2/A2 for a path length L
at wavelength A

4, Latm atmospheric gas loss (water vapor & oxygen)

Ae = AZG(a)/4w is the effective aperture area of the receiving

antenna with parameters

1. X wavelength

2. G(a) antenna power gain (a function of angle o).
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Alternatively, the antenna gain may be expressed in terms of a pattern
factor, g(a), defined by:

2
6(a) = = x 3-:-% 9(a),

where B is the antenna half-power beamwidth expressed in degrees. A
representative Gaussian antenna pattern factor (Equation (11)) may be
expressed as

2
gla) = exp |22
B
2
9gple) == 3
&

Gain degradation, R, as discussed in the text, results from angle of
arrival fluctuation and is a function of frequency, path length, and
aperture size.

A11 of the parameters defined above may be written concisely in
terms of decibels to describe received power in terms of transmitted
power, transmit antenna gain, free space loss, atmospheric gas loss,
gain degradation, and effective aperture area as:

Pr =Py G- Lfs - Latm - Rap * Ao

dBW dBW dB dB dB dB



APPENDIX B
FIRST MOMENT OF V

The receiver output voltage may be written:

%
v:

7%5 CIVE(0) Frexp(~ig;) + /G(@) fexp(-iE,)] ,

v 1804 i N - N
V= o=t Prexp(-18)) + /g(a) frexp(-i&,)] .

N, Y . Y v Y n
v is thus a function of random variables a, n, E], and 52, or

n 1802 VI VI VI
V= 2= clald,n, g, 8,) |
B/An LI
@ = /g(0) #iexp(-i€;) + /g(a) fexp(-iE,)

The expected value of V is found by taking the ensemble average over
random variable spaces a, 0, £1, and 52:

v _ 1802
BVAn

SRR A

The form of this expression for <V> is not integrable in general.
However, two useful properties of the kernel, ||, will enable an
approximation to be invoked which results in an integrable form. First,
the magnitude of the kernel || is large compared to the size of the
expected fluctuations of ©. This condition is due to the fact that the
development of the model was based upon the weak scattering assumption.
Second, the kernel |2| is slowly varying over the domains of o, n, £7,
and £2. For example, with n, £7, and & fixed, Tet a vary over its
range. The fluctuation which o imposes on £ as it _varijes, and hence
the fluctuation of |[@], will be proportional to |Vg{a)|, a smooth
function across the fluctuatjon domain. Similar gbservations may be
made as_|@| varies in n as |[f1|, in &7 as lexp(-igy)|, and in & as
lexp(-i%2)|.
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It may be shown (Reference [36]) that the first moment of a

function of a random variable may be approximated by the function of
the first moment of that random variable under the two conditions
mentioned above. In this case © is a random variable which is a
function itseif of independent random variables n, o, &, and &2 and
has a well defined moments. Assuming that the small fluctuation and
smoothness conditions are met and noting that the function of @ is
absolute value, then

<ol = a2y

Assuming this to be the case in the expression for <y

i

" 180 vy
<v> _— C<lQ(OL,T],E o5 )|>
BVTn 1°72

<'\\/'> - 5‘%,; C<‘/§T§)- ?]exp(_]rg]) + Vg(0> fzexp(—1g2)5>s

" 180A f—"“‘“ r*——“ YL
<y> o= C< (0)f Tc + % f & g o
v B/an_ [ g ) ( Zexp -1 -l+1 2)9( )

+g(a) ¥ F exp(+ig, - 152)]]/2>,

the ensemble average may be taken as very nearly equal to the averages
of the constituents of the absolute value process -

< éﬁﬁg CIVglont D +<Vglale, > + CH fpexp(-1E #1E,)g(w)?

4y

gl )? f exp +1€]—1€ >J1/2

The ensemble averages include integration on &} and &2 taken over the
domains -1/2 to w/2. Since &1 and & are uniformly distributed over
this range, the last two ensembles are zero. Integration on the
remaining two terms involves o over the domain O to =, and integration
on n from -= to =, Explicitly,
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N 180 W(w ﬂ‘/———- ‘
<y> = C @)nh (rn)s(a)dad
- ng)g ) ()5 (a) dadn

o o 5 1/2
+ S g Vg(ﬂ)fzﬁ(n)hu(a)dudn
~% 0
The integration of the delta functions gives:
o 2 [ 2|1/2
Y 180 —F— e
<y> = C 'KVQ(O)rwh {(n)dn S/g(u)f h (o)de
BV4n 2 " ) 27

Using the fact that g{«=0)=1 and f, is independent of o and has mean
?é, substitute the expressions for g(a), hn’ and h_:

- 2

n o180 1 X 12 /9,2

= A n exp[-(n-f,)"/207]dn
BV4r Zﬁo] ] ]

2 1/2

™
+ fz 3 exp[z:
: 0

Random variable ?1 has been replaced by its dummy amplitude random

2 2
o 4Q2€] gﬁ-exp - 3—? do
?B o5 202

variable, that is n. The first integral is the mean of a Gaussian
random variable ?1, i.e. ?}, and the second integral may be rewritten
so that:

2 1/2
. . i v (4202 248%) 02
s = 1802 ¢ ?? + ?é X 9§~exp - 252 da
BYd+ L 95 ZUZB
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We have assumed that o<<1 radian, so there will be negligible contri-
bution to the integral on o over the range w<a<e, Therefore, let the
upper Timit of integration go to infinity and define:
2,52
1 i} 4£n202+B
24 2058

For a Rayleigh distribution,

——
l
=4~

g o exp[—aZ/ZAzjda
(0]

A2 - S o exp[-o2/2A%1do..
0

Rewrite the integral in the expression for <v> in terms of A:

5 1/2

<> = 1807 C ?2+ 2 g o exp[—az/ZAz]da
0

One immediately notes that the integral may be replaced by A2:

5 1/2

N

= B g T, A
' BVl o5

Substituting in the definition for AZ, the first moment of v is:

172
2
BYAT 12 \4znzc§+82



APPENDIX €
SECOND MOMENT OF v

With the receiver output voltage equal to:

V= ;ig_} ¢/ga) | (¥ exp(-i¥, ) +f exp(-i%,)]-
¥ ~ n 1/2
[fiexp(+ig,)+f exp(+it,)] ,

32 may be written as:

2 180222 2
V.—T——‘C

2. 2 N
0 (u)l?]+f2+?]f2exp(-1g1+1g +¥ f,exp +1£]-1€2)l

2

The second moment of V, namely the ensemble average of v“ taken over

random variables n, a, and & is:

2> = 180 X c2 Cola ?2+f2+¥ fexp( 1g]+1g2 +? f exp +1£1—1€2)I> .

B

Since ?1, f2’ E1, and 22 are statistically independent, we may write:

<V2> _ 180 A C [<§ %$>+<§(a)f§>+<§(a)%]fzexp(—ig]+1gzl>

+<§(u)?]f2eXp(+1E]—122X>]

The 1ntegrat1on on 51 and EZ is taken over -n/2 to #/2 and, since
€1 and €2 are uniformly distributed, the last two averages are zero,
so that:

<v?> - j80 2 C [<§ %?>+<§ Zjﬂ,

B'iﬂ
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Rewriting <vZ> in terms of the integrals and pdf's:

Corn' (x’).
<V2> = ]80 X C B gg(o n h (n)8(a)dadn+ S Xg
B4'ﬂ' Jeo v - 00

Integration of the delta functions gives:

m
0

Nl’\)

(a)8(n)dadn|.

T

B47r

Substituting the expressions for hn(n), g(a), and ha(a),

2.2 2
<VZ> ——2————180 A C2 S W exp[-(n- )2/20]2]dn
B 4y e ZWO1

The first 1ntegra1 is the second moment of Gaussian variable ?1, or
<?$> = f 1+c]), and the upper integration limit on o may be taken
to =, s0 that

o 2. .2y 2
2.2 l (82n205+B7)a
2o 1807 2 2 o 2
<y©> = > C ?% ]+0 ZS ~ exp| - 20282 }du
: 2 2
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For a Rayleigh distribution,

g o exp[-a2/2A% Jda
0

o exp[—az/ZAzjda .

x>
~no
I
O "¢

Rewrite the integral in the expression for <VZ>'1n terms of A:

marem,

v 18082 2| 2 T 2,2
<y > = A C f](]+0.])+ -—2- g o exp[—a /2/—\ ]dO
B 4w a,
0
The integral may then be replaced by AZ:
2.2 5 pl
<32> _ 1807 C2 ?%(]+O$)+?§ A?
B 4q g,

Finally, substituting in the definjtion of AZ, one obtains:

2.2 2
e 2002 gty [
B™4x 84n2o;+B
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APPENDIX D
MODEL SUMMARY

I. Intensity Functions

<?’§> + <f§> = ]

- R

2 _ = _ .
f2 = f2 =1 - exp[-L/Lo], LONIBOkm
L = path length (km) .
II. Variance Parameters

Amplitude Variance

o = 2.6 x 1077 #/12@uHz) L1/O(kn) .

1

Angle of Arrival Variance

o5 = 5.67 x 107 L1 (km) a7/ 3(m)
L = path length
d = circular aperture diameter
f = frequency
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I1I. Gain Reduction

cg=0 (no angle fluctuation)

<y> = ensemble average of receiver voltage

2

?$ * ?g "“j%;“*?
4en20,+B

- 2
R =10 10910 ?2 N ?2
1 2

B = half power beamwidth in degrees assuming a Gaussian
antenna pattern function.

Iv. Received Signal Variance
2 2
2 <yT> - <y>
ST =10 lo e
910 2
=2,2 2
Ro2e_2 @ (8
0 L 82n202+82 2 42n20§+8Z
= =10 1og10 5 >
= | B
B+l =2
41n202+B




APPENDIX E
FADE DISTRIBUTION VARIAMCE

If

N 2
Z (Vi - <V>)
S2 = 10 log 1= 5

10 N <v>

is the definition of received signal variance, and we are interested in
the variance of the log amplitude, denoted oi, a transformation must be
made. Let %1 be defined as log amplitude by
Yy
b= 20 Togyg s
If the fluctuations about <v> are small compared to the magnitude of

<y>, Tet

D I VY WS B

Then,

2. = 20 Togyq (1+A1)

may be approximated by

’\/ °
£, R (20 1og]0e) A

If a function f(v) is normally distributed, with mean <v> and
variance 03, the function kf(v), where k is a constant, is also Gaussian,
having mean k<v> and variance kzqsn From the definition of the log-

amplitude,

58



59

Véw<v> +

_ s ~
T 20 Tog, e e = KR

However, the term on the left is a function of vy for which we have
2*

previously defined variance in dB as S Hence, if of is the variance

of 21,

2
} 1 2
= 10 Togyq (ﬁﬁ‘TaaygE) o

%%
5720 Togyg (m)

Solving for o,, the standard deviation of the log-amplitude,

9/3

2
- $7/20
o, = 20 1og]0e <10

*Note:

ViV 1
Var s <v>2 Var v1-<v{>

Vv, =<y>
Var l - Var ( v. for a symmetric density function.
v> <V>2 i
VoSV 2
10 1og]0Var IS = §

A






